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Simple closed analytical expressions are obtained for some integrals and infinite sums 
involving Legendre functions. The results are believed to be new. These sums and integrals 
may be useful for the calculation of magnetic tields with configurations close to the toroidal 
ones. The standard results of various asymptotic limits are recovered. ( 1987 Academic Press, Inc 

1 

In Ref. [ 1 ] we have obtained in three different ways the components of the vector 
magnetic potential (VMP) for the toroidal solenoid. As they satisfy the same 
equations and the same boundary conditions, they should coincide everywhere (see, 
e.g., [2]). By comparing these components one can derive simple closed analytical 
expressions for some integrals and sums involving Legendre functions. These 
expressions are lacking in the mathematical handbooks, treatises, and original 
publications [3312]. Suspecting that in some cases [ 133 the development of the 
potential w.r.t. the Legendre functions is invalid, we study the convergence of the 
treated series in those particular cases. The new expressions found for the sums and 
integrals may be applied to the calculation of the magnetic field with configurations 
close to the toroidal ones. 

2 

As we shall use toroidal coordinates the associated mathematical details are 
provided. The cylindrical coordinates are expressed in the toroidal system as 
follows: 

sh P sin 0 
p=a 7-a 

chp-case+- ch/l-cos8’ (P=(P 

The torus surface is defined by p = constant. The torus ((p -d)* + z2 = I?*) 
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parameters d and R are expressed as: R = a/sh ,u, d = a. cth p. For points on the z 
axis p=O. In the z=O plane, 8=0, for p>a and 0= fn for p<a. 

Let p = p0 determine a particular solenoid. Then for p > ,B~ (11 <cl,,) the point 
p, z, cp lies inside (outside) the solenoid. The magnetic field equals H, = g/p, 
H,, = H, = 0 inside the solenoid and zero outside of it. The constant g depends on 
the total number of coils and on the current strength: g = 2nJ/C; C is the velocity of 
light. 

3 

The VMP of the toroidal solenoid may be viewed as a superposition of VMP for 
separate coils. At the point p, z, cp one finds [ 11, 

(due to axial symmetry A,> and AZ do not depend upon cp and A, = 0). Function F 
is given by 

F(P, =, fi g 
cp)=- 

z2 + d* + R2 - 2dp cos cp 

27~ [(pco~cp-d)~+z’]“~ .“I2 {Pf~[(pcosy,~d)‘+z’]“’ 

Here and in the following P>(x) and Q>(X) are the Legendre functions of the 1st 
and 2nd kinds, respectively. If the superscript equals zero, we omit it. 

A, and A, may also be obtained from the solution of the Poisson equation in 
toroidal coordinates. Thereby, one has [ 11, 

A,=- ‘fgJm f Rf(p)cosnQ, 
II = 0 

A /’ =edm f R,‘,(p).sinnt’. 
,I = I 

The functions R,, equal 

J?(P) = C,ho). P,, ,dch ho). Q,, w(ch PU), 

R!(P) = - !A ,/z(ch ho). CP,, ,,2 (ch PO) - P, w(ch cldl . Qt - ,,@ ~0 

inside the solenoid (p > ,u”) and 

R:(P) = C&J. Q,-~ I:Ach ~0). P,, ,;dch PL), 

R!h) = - Qn ,iz(ch ~0). CQ n+ ,n(ch PO) - Q,,- w(ch ~uo)l f’,L ,,dch I*) 

(3.2) 



198 G. N. AFANASIEV 

outside if (P < PO); C,(PO) = (1 + &J’ . C(n + 4, Q,+,,,(ch 1~0) - (n - 1, 
Qn ~ m(ch PO)I. 

Equations (3.1) and (3.2) satisfy the same equations and boundary conditions 
(they are everywhere continuous, finite and tend to zero as re3 for r -+ co). So they 
should be the same (details may be found in any textbook on mathematical physics 
(see, e.g., C21). 

A direct comparison of Eqs. (3.1) and (3.2) is not very useful due to their com- 
plexity. Consequently, we consider particular cases. Set p = 0 in (3.1). Then one has 
for A, on the z axis 

(3.3) 

Put c(=O in (3.2) (this corresponds to the z axis). Taking into the account the 
behaviour of P;(ch 11) for p --+ 0 [3] and comparing (3.2) and (3.3) one obtains 

n ch ~0 
=~[1+2sh*p,,‘(1-co~8)]~‘~ . Q,,, [ 

1 + sh2po/( 1 - cos 0) 

41 + 2 sh2po/( 1 - cos Q) 1 ’ 
(3.4) 

For the particular values of 0 one obtains from (3.4) closed expressions for infinite 
sums involving Legendre functions. Set 0 = 7t. Then] 

i (-l)‘W+ 1).Q.~,12(ch11).Q,+I,2(~h~)=~ 4-& Q,,, (%). (3.5) 
II = 0 

For 8 -+ 0 both sides of (3.4) tend to zero as Q3, so that equating coefftcient at o3 
one finds 

II =a 

Finally, for 6’= 7c/2, 

Q-,,z(ch PL) Qm(ch cl) 

+ f (- 1)“. Qz,, 
,1= 1 

(3.6) 

1,2(ch PL). [I(4n + 1) * Qzn+ 112 (ch PL) - (4n - 1) Q2+ 3,2(ch P)I 

I-t =- $ (ch 2~) 
ch ’ 3/4 Q1i2 (: +z). (3.7) 

’ In expression (3.5) and in the following ones ((3.6), (3.7), (3.8)) we omit zero index of p. So p in 
(3.5) has no relation to p occurring in (3.2). (In fact, we put p =0 in (3.2) to obtain (3.4)) 
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We now prove that Eq. (3.6) converges. For fixed 1( and n + co one has [3], 

Qn ,/Ah P) = J n/2n sh p exp( -pn). So that for n -+ co, 

71 (2n+1)2 
(2n + 1 )2Q,l- ,,,(ch ~1. Qn + I,2(ch P) =-- 

m@iTTj 
exp [ -~(2n + I)]. 

It follows that as n--t n3 the ratio of two successive terms in (3.6) is equal to 
exp( -21~). Thus, the series (3.6) converges, for any finite p > 0, as a geometrical 
progression. Note that one may also derive from (3.4) the following closed 
expression for the integral: 

~~2=~~II+2sh2pl;ill_cosH),3/4 %[ 
1 + sh2p/( I - cos 0) 

,/l + 2 sh2p/( 1 - cos 0) I 

2& =chpQ,,-dchp) 
K 

n+1)Q.,+I?(chii)-(n-~)Q..~3~2(chjr) (3.8) 

Now consider the VMP component A,,. For p -+ 0 it decreases as the first power 
of p. Equating coefficients at ,D in (3.1) and (3.2) one obtains: 

f (4n2- l).Q ,z .~ ,;z(ch PL). CQ,, + 1/2 (ch P) - Q,, 3s2(ch ~11 sin no 
,z= 1 

=-$chpsh’p 
sin e 1 

(i-cose)5’2[i+2~h2~/(i-~0~e)]7/4 
. C2QiJ2(.~)- 3Q112(-~)lt 

1 + sh$/( 1 - cos e) 

X=[l+2sh’~/(l-cose)]‘~ 

(Here we again omitted zero index of pO.) As before one assigns to 8 specific values. 
For 0 + 0 one recovers (3.6), i.e., nothing new. For 8 --f rt a new equation is 
obtained 

,lf, ( - 1 )“n. (n + 1) . (2n + 1). Q,, r,2(ch PL) . Q,, + I.2(ch I*) 

n 1 1 + ch2p =-- -x C3. (1 + ch2p) Q,,,(v) + 2 sh2p. Q;,32(y)1, 32 (ch /,L)~‘~ y=2ch 

The convergence of (3.9) is proved along the same lines as that of (3.8). Finally, for 
e = q2, 
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4 

New relations are obtained if one equates the integral f A, dl along the closed 
contour passing through the hole of the toroidal solenoid to the magnetic field flow 
4 = fs H dS = 2nga. (cth pO - 1). For definiteness choose a contour with fixed p 
( < pO) and cp (see Fig. 1). Then 

A,dl=a 
s 

x A, 
d6 

-n ChjL-cos8’ (4.1) 

Here A, is the tangential component of A along the treated contour: A, = 
-[shp.sinBA,+(l-chp.cosQ)A,](chp--cos8))’. Inserting A, and A, from 
(3.2) carrying out the integration in (4.1) and equating the result to 4, produces 

(4.2) 

This relation may also be proved without relying on the physical aspects of the 
problem. Consider the integral: 

s 
Zn cos nQ do, A >o. 
o (ch p-cos 0)” 

/ \ / \ / \ \ / \ 
2R d a \ 

\ 1’ 
\ / 

\ 
I 

/ . --’ 

I / 
I / 
I / 
I / 
l--’ 

(4.3 1 

FIG. I. Schematic presentation of the toroidal solenoid treated. At the right one sees a typical path C 
(corresponding to p = const., cp = const. along with the integral f A, dl equals the magnetic field flow 4. 
The same is true for the integral aong the z axis. In fact one may close this path by the circle C, with 
sufkiently large radius &. For Ro+d the integal along C,, is negligible, so there remains only the 
integral along the whole : axis. 
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Direct integration gives 

201 

The integrand in (4.3) may also be viewed as a product of two cofactors: 

cos ne 1 

(ch p - cos 0)“’ (ch p - cos 0)” ” 
(O<A, <A). 

Expanding both of them in cos n# 133 and integrating as in (4.3) one obtains 

(4.4) 

[IQ,“,I;,,‘:%h P) + Q$,r ,‘(’ , z(ch P)I. 

Comparison of (4.4) and (4.5) leads to 

[Qi,‘+,;,‘, 2 + Q&‘,’ , z(ch ~11 

f(A I). un - A I) 
f(A) 

. (2;;’ -;:(ch 1~). 

(4.5) 

(4.6) 

Note, the sign of the modulus in Q$,rP,,, , z may be omitted since, for n integer 

C31, Q,l-,,,(~)=Q”,, pz’ 
Consider now particular cases of (4.6). For n = 1 A = 1, A, = i one obtains (4.2) 

(keep in mind that [3]: Q,‘;’ ,:*(ch p)= iJ= exp( -pn)). For n=O, A = 1, 
A,=$. 

7. 
[Q ,iAch pL)1’+2 c [Q,, ,.dch dl’=&. (4.7) 

,I = I 
The integral 

c 
” A,(p=O,z)dz=qP. (4.8 1 

5 

The equality of (4.8) and 4 may be independently confirmed by putting p=O 
(this corresponds to the z axis) in Eq. (3.2) for A= and integrating (4.8) over 0 

’ This follows from the fact that the integration path along the z axis may be closed by a circle C,,, 
of suffkiently large radius R, (Fig. 1). The integral over C,,,: R, f A,,, dl), (here 0, is the polar angle 
in spherical coordinates and .4,,b.is the component of A along the C,,) tends lo zero as RrL as R,+ ,x 
(In fact, A,,, = A,; cos 0, -A=. sm 0, and Eq. (3.1) results in the following asymptotic behavior of A,, 
and A, at large distances A; c rrg dR’( 1 + 3 cos 20,)/8rj), A 
(g dR*n/4R:) sin 0,. 

,, z 371~ dR’sin 2V,J8r’. S,, at r = R,, A,,, 2 
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(dz= - de/( 1 - cos 0)). On the other hand one may substitute A,(p = 0, z) given by 
(3.3) into (4.8). Then: 

or in dimensionless variables: 

(4.9) 

5 

The following equations are equivalent to Poisson equations 

~-~=~eIR-~~],divA=~~(pA,.)+~=O. 
,z (5.1) 

Here 0(.x) is the step function: 0(x) = 1 if x > 0 and 0 if x < 0. Now find solutions of 
(5.1). The gauge condition is automatically satisfied if 

A =‘6!? A_ = -‘%f p paZ’ - P ap (5.2) 

Inserting this into the first Eq. (5.1) one obtains a second order equation for $. It 
has the solution 

where I+!I,! is given by 

Ic/,z = Q! ,/Ach PL). j,:: f’,‘- &h PL) Qt- ,,&h P) $ 

+ P!  I/2 (ch p) jx L-Q!-~ ,&h iu)l’$ 
I’ 

inside the solenoid (p > po) and I,+,, = PLp ,,2(ch ,u) j; [Qf _ ,,2(ch p)12(d@h p) out- 
side it (p < po). Substituting 11/ and $, in (5.2) and using (3.7) produces the follow- 
ing relations between the integrals occurring in II/,,, 

i x [Q!,, ,,2(-d12 $3 
I 

zz s r v [Q’m ,Jx)12 --& K$o (K+;) Qtc+ &). QK- 1,2(x), 
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j 
dx 

x p!, ,:2(x). Qf, + ,.‘z(*x) - 
\ .x2- 1 

The derivative w.r.t. .Y gives 

= cg’%412-; IQ-,/~(x)I~+(~+;)~~ CQ,,+,&)l”- [Q;,+,,,W12, (5.3) 

2 i K.QK-,,(x).Px I 2(-x) 
K = 0 

=Q',~2(.~).PI,,2(~~)-~P~1;2/i).Q .,.2(x)+(n+;)2 

x Q,,, ,/A-y). P,,. ,.2(-y)- P;s,, 2(-y). Q!, , 2(-y). (5.4) 

As n + CC Eq. (5.3) goes into 

2 c K. CQ,, ,.z(‘c)l” = CQ’m , &.d12 -; [Q ,&)12, (5.5) 
K= I 

whereas both sides of the (5.4) tend to infinity as n/sh p. 

6 

The following analytical equations are based on the fact that outside the solenoid 
(where H = rot A = 0) the VMP may be presented as a gradient of some function x 
[ 141 (which we call a generating function). As f A, dl along the closed contours, 
passing through a torus hole (Fig. 1) differs from zero, x is a multivalued (more 
exactly: discontinuous) function. For the infinitely then toroidal solenoid (R/d4 1 
or pLo s 1) x is defined by the relations, following from (3.2), 

A, = E- exp( -2~~) 
P m(ch P) ~0s 0 - P,:,(ch P) 1 axe 

chp-cos0 Jj J&YZGi 
=-- 

A/J sin 8 

a 20 ’ (6.1) 

chp-cos0 = fi v exp( - 2cld 
qG&zzz 

P;,,(ch /L) = _f. s. 
a ap 
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Now integrate Eqs. (6.1) resp. over 8 and p and equate the results: 

-29-t f y. {P-~ ,,z(ch ~1. CQr,+ ,,r(ch PI+ Qn-m(ch P)I 
,I= I 

- 2f’, >(ch PL). Q,,- ,.‘Ach P,} 

‘. (6.2) 

Taking into account [6], that 

,;, ;s= ?H-Zn(l-cosi)sgnB 

and comparing coefficients at sin nB in (6.2) one obtains 

I z(x). CQ,r+ I/Z (xl + Q,,+,:,(x)1 

(6.3) 

When P -+ CCI, (6.3) goes into 

Applying the same procedure to a solenoid of finite thickness (R-d) one gets 
[ 1 ] a system of finite difference equations for the integrals F, = j-:[Q,, ._ I,2(x)]2dx 

and C,, = j-i’ P,, I:2(d~). Q,? ,,2(x) d,x. This system may be solved and one obtains 
the following simple analytic equations for F,, and C,,, 

1 /l-l 
--c ’ 2 KS” (K+ 1/2J2’ 

(6.5) 

n c,, = J= zo& CQK, ,/z(x). f’;, ,,2(-u) - QK- ,,2(“). PfK-~ ,,2(x)1. 
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As x + co, the first of the relations goes into the known one [3], 

whereas both sides of the second relation (6.5) behave like In&. As p. --+ w  the 
generating function for the toroidal solenoid of finite thickness (R - d) should pass 
into x0 (given by (6.2.)). This leads to the following condition [l] 

-f S,, = 2n[p,,-ml ,(x) F,, - Q,! I 7(-Ylr 

(6.6) 

where S, is given by 

Equation (6.6) generates many useful relations. For example, as s + ns one obtains 

” c f(K- l/2). T(n - K+ l/2) 

K=, f(K+ l).f(n-KS I) =2J 
T(n + l/2) 

/-(A) (6.7) 

Although similar to the Dougoll formula 131, it does not reduce to it. 

7 

Here we collect together some sums and integrals: 

(7.1) 

(7.2) 

(7.3) 
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% 

n + 1). Q,, ,/I(X). Qn + ,.‘d-x) 

+2(x2-l).QI;, , (7.4) 

,~~~(-~)‘i~(4~+~)~(4~+3)~Q2,~+,~2~~,~~Q2,~+~,(X)-Q2,i~,,2(.~)l 

7c x.(X-1) 2.Q’ 
=- 

fi (2-u’ - 1)“4 ‘[ ~.;(~&)-3Q~i2(~&)]~ (7.5) 

,,;,lQ,,- ,.rt-~l.Q,I+, A-d=;(&- 1) (7.6) 

IIQ , A.Y)]~+~ i [Q,, 1 d.~)l’= 2 & (7.7) 
,I = I 

5 

I 
“, ~,4Q,,(~~~~)=~(i-~~) (Odr<l), (7.8) 

0 (1 +.u-)- 

2 i K[QK ~, 2(.~)]2 
R = 0 

= CQ’,,2WI” - f CQ , 2t.912 + (H +i)2,,,,+ 1,2(x)1’- [Q!, ,,2J2 (7.9) 

2 i K. QK- &). Pk. ,,A-Y) 
x = 0 

=Q’ ,,WP’ ,;yj.~)-~Q~,,,(x).P-,,2(~)+ 
( ) 

; 

2 

n+- 

2 i K. [QK- ,&)I2 = L-Q’. ,,2(x)12 -; CQ ,,2(x)12> 
K=O 

?‘, 
’ f” ,,,(a~). Q,‘p &) d-x 

(7.10) 

(7.11) 

1 

=4 4n’ ( > 
‘-1 {P.,:~(-~)~~Q,~+~,~(x)+Q,~~~,~(x)I 

-~.P,;,(x).Q.-,,~(x):+~~ (7.12) 
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CQK, ,;z(-y) Q:, + ,.2(-y) 

-Q,-- ,l2(x) Q:, ,iz(x)l -; ‘i’ (K+;) ‘3 
I(=0 

207 

(7.13) 

(7.14) 

. [Q,, , A-y). P;,+ ,/J-y) - Qtc , J-u). P:, , z(.y)l, (7.15) 

h.=, I-(K+l)I-(n-K+l) 
= 2& nn + l/2 1 

f(n+l) 
(7.16) 

' I-(K- 1/2)f(n- K+ l/2) c 
In all these relations .Y is always greater than I; n 3 0 in (7.9) and (7.10) and 

n3 I in (7.12)-(7.16). 
Many useful relations may be obtained by applying the Whipple relation [3] 

between the Legendre functions to (7.1 )-(7.15) (from e.g., (7.2) and (7.6)), 

(7.2') 

,~,I-(n. l,2)11(rr+3,2)P" ,z(.Y)P":;(.Y)= &(.Y- 1)/(x+ 1). (7.6') 
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